Abstract

A new technique is proposed for the design of linear power amplifiers at millimeter-wave frequencies where load-pull of large transistor output cells is difficult. The technique transforms the load-pull data on a small, standard foundry transistor layout to a pair of common-gate contours for the intrinsic device; one source-gate and one drain-gate. These are recombined as an intrinsic drain-source contour for a larger and arbitrary transistor layout. A Q-band driver amplifier for the ETSI 42-GHz point-to-point radio band has been designed using the proposed technique. The fabricated MMIC consumes 1 W and has a gain of 21 dB, with OIP3 of 35 dBm, OIP5 of 28 dBm and P1 dB of 23 dBm. The PAE is approximately 19%. The OIP3 to P1 dB and OIP3 to dc power ratios are believed to be the best reported to date.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.