Abstract

Short interspersed elements (SINEs) and long interspersed elements (LINEs) are transposable elements in eukaryotic genomes that mobilize through an RNA intermediate. Understanding their evolution is important because of their impact on the host genome. Most eukaryotic SINEs are ancestrally related to tRNA genes, although the typical tRNA cloverleaf structure is not apparent for most SINE consensus RNAs. Using a cladistic method where RNA structural components were coded as polarized and ordered multistate characters, we showed that related structural motifs are present in most SINE RNAs from mammals, fishes and plants, suggesting common selective constraints imposed at the SINE RNA structural level. Based on these results, we propose a general multistep model for the evolution of tRNA-related SINEs in eukaryotes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call