Abstract

The H1 histone multigene family shows the greatest diversity of isoforms among the five histone gene families, including replication-dependent (RD) and replication-independent (RI) genes, according to their expression patterns along the cell cycle and their genomic organization. Although the molecular characterization of the RI isoforms has been well documented in vertebrates, similar information is lacking in invertebrates. In this work we provide evidence for a polyadenylation signature in the Mytilus "orphon" H1 genes similar to the polyadenylation characteristic of RI H1 genes. These mussel genes, together with the sea urchin H1delta genes, are part of a lineage of invertebrate "orphon" H1 genes that share several control elements with vertebrate RI H1 genes. These control elements include the UCE element, H1-box and H4-box. We provide evidence for a functional evolution of vertebrate and invertebrate RI H1 genes, which exhibit a clustering pattern by type instead of by species, with a marked difference from the somatic variants. In addition, these genes display an extensive silent divergence at the nucleotide level which is always significantly larger than the nonsilent. It thus appears that RI and RD H1 isoforms display similar long-term evolutionary patterns, best described by the birth-and-death model of evolution. Notably, this observation is in contrast with the theoretical belief that clustered RD H1 genes evolve in a concerted manner. The split of the RI group from the main RD group must therefore have occurred before the divergence between vertebrates and invertebrates about 815 million years ago. This was the result of the transposition of H1 genes to solitary locations in the genome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.