Abstract

In the present study, participants performed highly comparable task-switching and dual-task paradigms, and the paradigm-specific performance costs were analysed in the context of the commonly postulated core components of cognitive control (i.e., working memory updating, inhibition, and shifting). In the task-switching paradigm, we found switch costs (i.e., switch trials vs. repetition trials) and mixing costs (i.e., repetition trials in mixed-task blocks vs. single-task trials). In the dual-task paradigm, we observed a psychological refractory period (PRP) effect (i.e., Task 2 [T2] performance after short stimulus-onset asynchrony [SOA] vs. long SOA), dual-task costs (i.e., T2 dual-task performance with a long SOA in trials with a task repetition between Task 1 [T1] and T2 vs. single-task performance), and switch costs in T2 (i.e., dual-task performance in trials with a switch between T1 and T2 vs. dual-task performance in trials with a repetition between T1 and T2). A within-subjects comparison of the performance costs showed a correlation between mixing costs and dual-task costs, possibly indicating shared underlying cognitive control processes in terms of working memory updating. Surprisingly, there was also a correlation between switch costs and the PRP effect, presumably suggesting that cognitive control, as opposed to passive queuing of response selection processes, contributes to the PRP effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call