Abstract

The three-dimensional structures of metal and non-metal enzymes that catalyze the same reaction are often quite different, a clear indication of convergent evolution. However, there are interesting cases in which the same scaffold supports both a metal and a non-metal catalyzed reaction. One of these is 3-deoxy- D-manno-octulosonate 8-phosphate (KDO8P) synthase (KDO8PS), a bacterial enzyme that catalyzes the synthesis of KDO8P and inorganic phosphate (P i) from phosphoenolpyruvate (PEP), arabinose 5-phosphate (A5P), and water. This reaction is one of the key steps in the biosynthesis of bacterial endotoxins. The evolutionary tree of KDO8PS is evenly divided between metal and non-metal forms, both having essentially identical structures. Mutagenesis and crystallographic studies suggest that one or two residues at most determine whether or not KDO8PS requires a metal for function, a clear example of “minimalist evolution”. Quantum mechanical/molecular mechanical (QM/MM) simulations of both the enzymatic and non-enzymatic synthesis of KDO8P have revealed the mechanism underlying the switch between metal and non-metal dependent catalysis. The principle emerging from these studies is that this conversion is possible in KDO8PS because the metal is not involved in an activation process, but primarily contributes to orienting properly the reactants to lower the activation energy, an action easily mimicked by amino acid side-chains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.