Abstract
The brain contains both generalized and stimulus-type-specific representations of aversive events, but models of how these are integrated and related to subjective experience are lacking. We combined functional magnetic resonance imaging with predictive modeling to identify representations of generalized (common) and stimulus-type-specific negative affect across mechanical pain, thermal pain, aversive sounds and aversive images of four intensity levels each. This allowed us to examine how generalized and stimulus-specific representations jointly contribute to aversive experience. Stimulus-type-specific negative affect was largely encoded in early sensory pathways, whereas generalized negative affect was encoded in a distributed set of midline, forebrain, insular and somatosensory regions. All models specifically predicted negative affect rather than general salience or arousal and accurately predicted negative affect in independent samples, demonstrating robustness and generalizability. Common and stimulus-type-specific models were jointly important for predicting subjective experience. Together, these findings offer an integrated account of how negative affect is constructed in the brain and provide predictive neuromarkers for future studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.