Abstract

A wide diversity of plant-associated symbionts, including microbes, produce proteins that can enter host cells, or are injected into host cells in order to modify the physiology of the host to promote colonization. These molecules, termed effectors, commonly target the host defense signaling pathways in order to suppress the defense response. Others target the gene expression machinery or trigger specific modifications to host morphology or physiology that promote the nutrition and proliferation of the symbiont. When recognized by the host's surveillance machinery, which includes cognate resistance (R) gene products, defense responses are engaged to restrict pathogen proliferation. Effectors from diverse symbionts may be delivered into plant cells via varied mechanisms, including whole organism cellular entry (viruses, some bacteria and fungi), type III and IV secretion (in bacteria), physical injection (nematodes and insects) and protein translocation signal sequences (oomycetes and fungi). This mini-review will summarize both similarities and differences in effectors and effector delivery systems found in diverse plant-associated symbionts as well as how these are described with Plant-Associated Microbe Gene Ontology (PAMGO) terms.

Highlights

  • Diverse organisms live in intimate association with plants, with the outcome of these associations dependent upon a complex interplay of gene products

  • This particular review will focus on properties of effector proteins that enter the host cytoplasm and the role that Gene Ontology (GO) can play in highlighting similarities and differences exhibited by effectors deployed by plant pathogens from diverse biological kingdoms

  • It is important to note that while this review focuses on organisms living in a pathogenic relationship with the host plant, there are many associations that cannot readily

Read more

Summary

Conclusion

The value of GO annotations in efficiently summarizing information about gene products from the literature in a standardized way cannot be over-emphasized. The GO terms developed by the PAMGO consortium greatly improve the resources for annotation of diverse symbiont genomes, for gene products such as effectors that are directly involved in the interaction with the host. Such annotations can be used to aid interpretation of genome sequence comparisons and of microarray and proteomics data. Increased community involvement in GO annotation of more symbiont genomes, along with the development of additional GO terms, will provide valuable resources for more comprehensive cross-kingdom effector analyses, which will lead to a better understanding of mechanisms underlying symbiont interactions with hosts

12. Ebbole DJ
15. Tyler BM
42. Hardham AR
60. Glazebrook J
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.