Abstract
Prediction models have become essential for the improvement of decision-making processes in public management and, particularly, for water supply utilities. Accurate estimation often needs to solve multimeasurement, mixed-mode, and space-time problems, typical of many engineering applications. As a result, accurate estimation of real world variables is still one of the major problems in mathematical approximation. Several individual techniques have shown very good estimation abilities. However, none of them are free from drawbacks. This paper faces the challenge of creating accurate water demand predictive models at urban scale by using so-called committee machines, which are ensemble frameworks of single machine learning models. The proposal is able to combine models of varied nature. Specifically, this paper analyzes combinations of such techniques as multilayer perceptrons, support vector machines, extreme learning machines, random forests, adaptive neural fuzzy inference systems, and the group method for data handling. Analyses are checked on two water demand datasets from Franca (Brazil). As an ensemble tool, the combined response of a committee machine outperforms any single constituent model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Mathematical Problems in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.