Abstract

We report on commissioning the iodine absorption cell in the High Resolution Spectrograph (HRS) on the Southern African Large Telescope (SALT). The low-, medium- and high-resolution (LR, MR and HR) modes of this fibre-fed, dual-channel, white-pupil vacuum echelle spectrograph have been in use by the SALT consortium since 2014, but the high-stability (HS) mode requires exoplanet expertise not available in our community. The original commercial HRS iodine cell was unsuitable due to an excess of iodine so it was replaced with a suitable custom-built cell. This cell was characterised at high signal-to-noise, at a resolution of 106, using the Fourier Transform Spectrometer at the National Institute of Standards and Technology before incorporation into the HRS HS bench. A combination of calibration frames and on-sky data were then used to produce an HRS-specific version of an IDL software package that derives precision radial velocities (PRVs) from spectra taken through an iodine cell. Bright stars with highly stable RVs observed during a short engineering campaign in May 2018 demonstrate that SALT HRS is currently capable of delivering Doppler precision of 4-7m/s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.