Abstract

The goal of total body irradiation (TBI) is to deliver a dose to the whole body with uniformity within ±10%. The purpose of this study was to establish the technique of TBI using plastic bead bags. A lifting TBI bed, Model ORP-TBI-MN, was used. The space between the patient’s body and the acrylic walls of the bed was filled with polyacetal bead bags. Patients were irradiated by a 10 MV photon beam with a source to mid-plane distance of 400 cm. The monitor unit (MU) was calculated by dose-per-MU, tissue-phantom-ratio and a spoiler factor measured in solid water using an ionization chamber. The phantom-scatter correction factor, off-center ratio and the effective density of the beads were also measured. Diode detectors were used for in vivo dosimetry (IVD). The effective density of the beads was 0.90 ± 0.09. The point doses calculated in an I’mRT phantom with and without heterogeneity material showed good agreement, with measurements within 3%. An end-to-end test was performed using a RANDO phantom. The mean ± SD (range) of the differences between the calculated and IVD-measured mid-plane doses was 1.1 ± 4.8% (−5.9 to 5.0%). The differences between the IVD-measured doses and the doses calculated with Acuros XB of the Eclipse treatment planning system (TPS) were within 5%. For two patients treated with this method, the differences between the calculated and IVD-measured doses were within ±6% when excluding the chest region. We have established the technique of TBI using plastic bead bags. The TPS may be useful to roughly estimate patient dose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call