Abstract

The Cayconi district of the Cordillera de Carabaya, SE Peru, exposes a remnant of an upper Oligocene–Lower Miocene (22.2–24.4 Ma) volcanic field, comprising a diverse assemblage of S-type silicic and calc-alkaline basaltic to andesitic flows, members of the Picotani Group of the Central Andean Inner Arc. Basaltic flows containing olivine, plagioclase, clinopyroxene, ilmenite and glass, and glassy rhyolitic agglutinates with phenocrystic quartz, cordierite, plagioclase, sanidine, ilmenite and apatite, respectively exhibit mineralogical and geochemical features characteristic of medium-K mafic and Lachlan S-type silicic lavas. Cordierite-bearing dacitic agglomerates and lavas, however, are characterized by dispersed, melanocratic micro-enclaves and phenocrysts set in a fine-grained quartzo-feldspathic matrix. They contain a bimodal mica population, comprising phlogopite and biotite, as well as complexly zoned, sieve-textured plagioclase grains, sector-zoned cordierite, sanidine, quartz, irregular patches of replaced olivine, clinopyroxene and orthopyroxene and accessory phases including zircon, monazite, ilmenite and chromite. The coexistence of minerals not in mutual equilibrium and the growth/dissolution textures exhibited by plagioclase are features indicative of magmatic commingling and mixing. Trachytic-textured andesite flows interlayered with olivine+plagioclase–glomerophyric, calc-alkaline basalts have a phenocrystic assemblage of resorbed orthopyroxene and plagioclase and exhibit melanocratic groundmass patches of microphenocrystic phlogopite, Ca-rich sanidine, ilmenite and aluminous spinel. The mineralogical and mineral chemical relationships in both the dacites and the trachytic-textured andesites imply subvolcanic mixing between distinct ultrapotassic mafic melts, not represented by exposed rock types, and both the S-type silicic and calc-alkaline mafic magmas. Such mixing relationships are commonly observed in the Oligo-Miocene rocks of the Cordillera de Carabaya, suggesting that the S-type rocks in this area and, by extension, elsewhere derive their unusually high K 2O, Ba, Sr, Cr and Ni concentrations from commingling and mixing with diverse, mantle-derived potassic mafic magmas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call