Abstract
The usefulness of opportunistic arrhythmia screening strategies, using an electrocardiogram (ECG) or other methods for random “snapshot” assessments is limited by the unexpected and occasional nature of arrhythmias, leading to a high rate of missed diagnosis. We have previously validated a cardiac monitoring system for AF detection pairing simple consumer-grade Bluetooth low-energy (BLE) heart rate (HR) sensors with a smartphone application (RITMIA™, Heart Sentinel srl, Italy). In the current study, we test a significant upgrade to the above-mentioned system, thanks to the technical capability of new HR sensors to run algorithms on the sensor itself and to acquire, and store on-board, single-lead ECG strips. We have reprogrammed an HR monitor intended for sports use (Movensense HR+) to run our proprietary RITMIA algorithm code in real-time, based on RR analysis, so that if any type of arrhythmia is detected, it triggers a brief retrospective recording of a single-lead ECG, providing tracings of the specific arrhythmia for later consultation. We report the initial data on the behavior, feasibility, and high diagnostic accuracy of this ultra-low weight customized device for standalone automatic arrhythmia detection and ECG recording, when several types of arrhythmias were simulated under different baseline conditions. Conclusions: The customized device was capable of detecting all types of simulated arrhythmias and correctly triggered a visually interpretable ECG tracing. Future human studies are needed to address real-life accuracy of this device.
Highlights
IntroductionTechnological advances in the field of cardiac rhythm monitoring have been rapid in the last years
Studies have demonstrated that prolonging the monitoring period yields incremental detection of arrhythmias [11,12], but Holter ECG recordings remain limited in the maximal duration of continuous monitoring, often not sufficient to detect rarely occurring arrhythmias [13]
We report the diagnostic accuracy of this affordable, ultra-low weight customized device for standalone automatic arrhythmia detection and ECG recording when several types of arrhythmias were simulated
Summary
Technological advances in the field of cardiac rhythm monitoring have been rapid in the last years. The design of new devices or repurposed consumer technology has been focused mostly on the detection of silent atrial fibrillation (AF) [1], but recent studies demonstrate limited clinical utility in the pursuit of short and asymptomatic AF episodes [2]. Most arrhythmias are short-lived, but the prognostic value of detecting even a few seconds of some of them, for example, asystole or ventricular tachycardia, is very high. The usefulness of opportunistic screening strategies, using an electrocardiogram (ECG) or other methods for random “snapshot” assessments, is limited by the unexpected and occasional nature of arrhythmias, leading to a high rate of missed diagnosis [7–10]. Studies have demonstrated that prolonging the monitoring period yields incremental detection of arrhythmias [11,12], but Holter ECG recordings remain limited in the maximal duration of continuous monitoring, often not sufficient to detect rarely occurring arrhythmias [13]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.