Abstract

As photovoltaics (PV), also known as solar electricity, has been growing over the years, the energy markets have been gradually moving toward decentralization. However, recent media accusations suggest that decentralized renewable energy is slowly becoming unpopular because of the hidden fees being charged to owners of installed PV systems. In response, this paper investigates the potential for alternative approaches to incentivize owners using peer-to-peer (P2P) sharing. This study provides an analytical comparison between the use of the P2P mechanism, the net-metering mechanism, and a combination of these in the commercial sector. Through the use of a simulation, this case study presents the possible outcomes of the implementation of these models in a microgrid. Using technical and economic indexes the comparison was made by looking at the following indexes: peak power, energy balance, economic benefit, and transaction index. Based on a microgrid of 28 commercial buildings, readings of consumption were taken at intervals of one hour, and a Python model was made to find PV size and compare trading mechanisms. It was found that the combination of P2P and net-metering had the best overall performance, followed by net-metering itself, with the best season being all for both, and summer for net-metering by itself. This shows that a P2P model implemented in a microgrid helps create more energy balance, although the combination would achieve the highest performance. This study can be used by policymakers for proposing renewable energy policies and regulations that are more beneficial to all prosumers and consumers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.