Abstract

Facemasks as personal protective equipment play a significant role in helping prevent the spread of viruses during the COVID-19 pandemic. A desired reusable fabric facemask should strike a balance of water repellency, good filtration efficiency (FE), breathability, and mechanical robustness against washing cycles. Despite significant efforts in testing various commercial fabric materials for filtration efficiency, few have investigated fabric performance as a function of the fiber/yarn morphology and wettability of the fabric itself. In this study, we examine commercial fabrics with Janus-like behaviors to determine the best reusable fabric facemask materials by understanding the roles of morphology, porosity, and wettability of the fabric on its overall performance. We find that the outer layer of the diaper fabric consisted of laminated polyurethane, which is hydrophobic, has low porosity (∼5%) and tightly woven yarn structures, and shows the highest overall FE (up to 54%) in the submicron particle size range (0.03-0.6 μm) among the fabrics tested. Fabric layers with higher porosity lead to lower-pressure drops, indicating higher breathability but lower FE. Tightly woven waterproof rainwear fabrics perform the best after 10 washing cycles, remaining intact morphologically with only a 2-5% drop in the overall FE in the submicron particle size range, whereas other knitted fabric layers become loosened and the laminated polyurethane thin film on the diaper fabric is wrinkled. In comparison, the surgical masks and N95 respirators made from nonwoven polypropylene (PP) fibers see over a 30% decline in the overall FE after 10 washing cycles. Overall, we find that tightly woven Janus fabrics consisting of a low porosity, a hydrophobic outer layer, and a high porosity and hydrophilic inner layer offer the best performance among the fabrics tested as they can generate a high overall FE, achieve good breathability, and maintain fabric morphology and performance over multiple washing cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.