Abstract

In this work, a series of commercially available materials was screened for the catalytic hydrogenation of nitrobenzene (NB). The materials revealed different performances, particularly different activities in what concerns the NB conversion, and notably diverse selectivities towards the industrially desired reaction product, aniline (ANL). The catalysts’ active phases are based on Pd and Ni (respectively groups I and II), namely 1wt.% Pd/Al2O3 (catalyst I.1), 0.3wt.% Pd/Al2O3 (catalyst I.2), 0.3wt.% Pd/Al2O3 (catalyst I.3), and 50wt.% NiO/(Al2O3+SiO2) (catalyst II.1). The fresh and used materials were characterized by several physical-chemical techniques, specifically scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), nitrogen adsorption (with BET surface area determination), X-ray diffraction (XRD), H2 temperature-programmed reduction (TPR), inductively coupled plasma mass spectrometry (ICP-MS) and elemental (CHNS) analysis. It was shown that the catalysts are stable in the conditions studied and no deactivation was found. The characterization results allowed explaining the catalytic behavior of the tested materials. In particular, catalyst I.1 was found to be the less active, probably due to its much lower BET surface area (and larger Pd particle size). On the other hand, catalyst I.2 was the more active, which was well correlated to the smaller average particle size (along with narrower Pd particle size distribution) and smaller pellet size, although the active metal content is low. Finally, it was observed that catalyst II.1 is the most selective towards light by-products (benzene (Bz), cyclohexylamine (CHA), cyclohexanol (CHOL) and cyclohexanone (CHONA)), probably due to its lower pore size dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.