Abstract
Presentations of aromaticity and acid-base character of pyridine and pyrrole in 18 contemporary organic chemistry textbooks were surveyed. Superficially, each of these two monoaza aromatic heterocycles retains an electron pair on its sp2-hybridized ring nitrogen, ostensibly available for neutralization with a proton to form a salt. The two nonbonded electrons in pyridine, in an sp2-hybridized orbital outside the ring, are not interacting with the 6π-electron aromatic sextet and thus are fully available for neutralization to form an N+-H pyridinium cation. However, in pyrrole, the nonbonded electron pair on nitrogen is part of the aromatic 6π- electron sextet and is not available for NH salt formation, since this would generate an aliphatic (highly reactive) diene imminium cation, which would destroy pyrrole's aromaticity. However, electrophilic attack of a proton in an irreversible manner attacks C-2 of pyrrole to form a resonance-stabilized cationic intermediate capable of further transformations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.