Abstract

Hsu and Grinolds recently compared channel hot-electron (CHE) stress results of conventional and "extended drain" NMOS FET's. [1]. They observe increasing degradation as the extended drain resistance increases when the drain bias is defined as that which produces a fixed substrate current. A model in which the hot-electron stress induces surface states within the extended drain region is proposed. We argue that the drain bias condition chosen for these measurements does not produce equal numbers of channel hot electrons in all devices as is claimed. Since the ratio of substrate current to source current is a measure of the mean electron energy, we claim that this ratio (and hence the mean electron energy) increases as extended drain resistance increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.