Abstract
In the commented paper, the authors consider a three-dimensional system and analyze the presence of Shilnikov chaos as well as a Hopf bifurcation. On the one hand, they state that the existence of a chaotic attractor is verified via the homoclinic Shilnikov theorem. The homoclinic orbit of this system is determined by using the undetermined coefficient method, introduced by Zhou et al. in [Chen's attractor exists, Int. J. Bifurcation Chaos 14 (2004) 3167–3178], a paper that presents very serious shortcomings. However, it has been cited dozens of times and its erroneous method has been copied in lots of papers, including the commented paper where an even expression for the first component of the homoclinic connection is used. It is evident that this even expression cannot represent the first component of a Shilnikov homoclinic connection, an orbit which is necessarily non-symmetric. Consequently, the results stated in Section 3, the core of the paper, are worthless. On the other hand, the study of the Hopf bifurcation presented in Section 4 is also wrong because the first Lyapunov coefficient provided by the authors is incorrect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.