Abstract
In these comments on the excellent survey by Dinh and Jeyakumar, we briefly discuss some recently developed topics and results on applications of extended Farkas’ lemma(s) and related qualification conditions to problems of variational analysis and optimization, which are not fully reflected in the survey. They mainly concern: Lipschitzian stability of feasible solution maps for parameterized semi-infinite and infinite programs with linear and convex inequality constraints indexed by arbitrary sets; optimality conditions for nonsmooth problems involving such constraints; evaluating various subdifferentials of optimal value functions in DC and bilevel infinite programs with applications to Lipschitz continuity of value functions and optimality conditions; calculating and estimating normal cones to feasible solution sets for nonlinear smooth as well as nonsmooth semi-infinite, infinite, and conic programs with deriving necessary optimality conditions for them; calculating coderivatives of normal cone mappings for convex polyhedra in finite and infinite dimensions with applications to robust stability of parameterized variational inequalities. We also give some historical comments on the original Farkas’ papers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.