Abstract

Flat domain walls and spherical black holes are solutions to coupled second-order ODE’s of the Hamiltonian form. Hamilton–Jacobi theory then implies that first-order flow equations always exist (possibly up to isolated submanifolds). If the first-order equations factorise in a specific way, they take a form that has been named fake supersymmetry. We point out that this factorisation is always possible at zero temperature. We therefore propose a less generic definition of fake supersymmetry, which involves the boundary conditions in a non-trivial way, and we analyse its physical relevance. For instance, attractor flows are necessarily fake supersymmetric in our restricted sense. To illustrate the definition we provide new analytic solutions for axion-dilaton domain walls with fake superpotentials that were argued not to exist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.