Abstract

It is well known that a necessary and sufficient condition for the conformal flatness of a three-dimensional pseudo-Riemannian manifold can be expressed in terms of the vanishing of a third-order tensor density concomitant of the metric which has contravariant valence 2. This was first discovered by Cotton in 1899. It is shown that Cotton’s tensor density is not the Euler–Lagrange expression corresponding to a scalar density built from one metric tensor. This tensor density is shown to be uniquely characterized by its conformal properties coupled with the demand that it be differentiable for arbitrary metrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.