Abstract

General expressions for the components of the Ricci collineation vector are derived and the related constraints are obtained. These constraints are then solved to obtain Ricci collineations and the related constraints on the Ricci tensor components for all spacetime manifolds (degenerate or non-degenerate, diagonal or non-diagonal) admitting symmetries larger than so(3) and already known results are recovered. A complete solution is achieved for the spacetime manifolds admitting so(3) as the maximal symmetry group with non-degenerate and non diagonal Ricci tensor components. It is interesting to point out that there appear cases with finite number of Ricci collineations although the Ricci tensor is degenerate and also the cases with infinitely many Ricci collineations even in the case of non-degenerate Ricci tensor. Interestingly, it is found that the spacetime manifolds with so(3) as maximal symmetry group may admit two extra proper Ricci collineations, although they do not admit a G5 as the maximal symmetry group. Examples are provided which show and clarify some comments made by Camci et al. [Camci, U., and Branes, A. (2002). Class. Quantum Grav.19, 393–404]. Theorems are proved which correct the earlier claims made in [Carot, J., Nunez, L. A., and Percoco, U. (1997). Gen. Relativ. Gravit.29, 1223–1237; Contreras, G., Nunez, L. A., and Percolo, U. (2000). Gen. Relativ. Gravit.32, 285–294].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.