Abstract

Much of the forecast skill in the mid-latitudes on seasonal timescales originates from deep convection in the tropical belt. For boreal summer, such tropical-extratropical teleconnections are less well understood as compared to winter. Here we validate the representation of boreal tropical – extratropical teleconnections in a general circulation model in comparison with observational data. To characterise variability between tropical convective activity and mid-latitude circulation, we identify the South Asian monsoon (SAM) – circumglobal teleconnection (CGT) pattern and the western North Pacific summer monsoon (WNPSM) – North Pacific high (NPH) pairs as the leading modes of tropical-extratropical coupled variability in both reanalysis (ERA5) and seasonal forecast (SEAS5) data. We calculate causal maps, an application of the PCMCI causal discovery algorithm which identifies causal links in a 2D field, to show the causal effect of each of these patterns on circulation and convection in the Northern Hemisphere. The spatial patterns and signs of the causal links in SEAS5 closely resemble those seen in ERA5, independent of the initialization date of SEAS5. However, the strength of causal links in SEAS5 is often too weak (about two thirds of those in ERA5). By performing a subsampling (over time) experiment, we identify those regions for which SEAS5 data well reproduce ERA5 values, e.g. South-eastern US, and highlight those where the bias is more prominent, e.g. North Africa. We demonstrate that different El Niño – Southern Oscillation phases have only a marginal effect on the strength of these links. Finally, we discuss the potential role of model mean-state biases in explaining differences between SEAS5 and ERA5 causal links.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call