Abstract

Long-duration dry spells in combination with temperature extremes during summer have led to extreme impacts on society and ecosystems in the past. Such events are expected to become more frequent due to increasing temperatures as a result of anthropogenic climate change. However, there is little information on how long-duration dry and hot spells are represented in global climate models (GCMs). In this study, we evaluate 33 CMIP5 GCMs in their representation of long-duration dry spells and temperatures during dry spells. We define a dry spell as a consecutive number of days with daily precipitation less than 1mm. CMIP5 models tend to underestimate the persistence of dry spells in Northern Europe while a large variability exists between model estimates in Central and Southern Europe where models have contrasting biases. Our results indicate that this variability in model estimates is due to inherent model differences and not internal variability. In Northern Europe, differences in the representation of persistent dry spells are related to the representation of persistent anticyclonic conditions. We also find a large spread in the representation of temperature extremes during dry spells. In Central and Southern Europe this spread in temperature extremes between models is related to the representation of dry spells, where models that produce longer dry spells also produce higher temperatures, and vice versa. Overall, there are large discrepancies in the representation of long-duration dry and hot events in the CMIP5 ensemble where the simulated climates vary from models with shorter-cooler dry spells to models with longer-hotter dry spells. This information is important to consider when interpreting the plausibility of future projections from climate models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call