Abstract

A class of left bialgebroids whose underlying algebra A♯H is a smash product of a bialgebra H with a braided commutative Yetter–Drinfeld H-algebra A has recently been studied in relation to models of field theories on noncommutative spaces. In Borowiec and Pachoł (2017 J. Phys. A: Math. Theor. 50 055205) a proof has been presented that the bialgebroid AF♯HF where HF and AF are the twists of H and A by a Drinfeld 2-cocycle F=∑F1⊗F2 is isomorphic to the twist of bialgebroid A♯H by the bialgebroid 2-cocycle ∑1♯F1⊗1♯F2 induced by F. They assume H is quasitriangular, which is reasonable for many physical applications. However the proof and the entire paper take for granted that the coaction and the prebraiding are both given by special formulas involving the R-matrix. There are counterexamples of Yetter–Drinfeld modules over quasitriangular Hopf algebras which are not of this special form. Nevertheless, the main result essentially survives. We present a proof with a general coaction and the correct prebraiding, and even without the assumption of quasitriangularity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.