Abstract

A recent article in this journal [D.L. Sidebottom, J. Non-Cryst. Solids 516 (2019) 63–66] proposes a “universal topological pattern” for the composition dependence of liquid fragility in terms of the number of coarse-grained topological constraints in the glass-forming network. This “universal topological pattern,” however, is reported without any physical derivation from Angell's definition of liquid fragility. Alternatively, temperature-dependent constraint theory shows that fragility is indeed governed by the underlying topology of the glass network, but in terms of the temperature dependence of the constraints rather than the absolute magnitude of those constraints. Temperature-dependent constraint theory offers quantitatively accurate predictions of the composition dependence of fragility, together with insights regarding the contributions of each individual constraint to the overall fragility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.