Abstract

Although reanalysis products for remote high-mountain regions provide estimates of snow precipitation, this data is inherently uncertain and assessing a potential bias is difficult due to the scarcity of observations, thus also limiting their reliability to evaluate long-term effects of climate change. Here, we compare the winter mass balance of 95 glaciers distributed over the Alps, Western Canada, Central Asia and Scandinavia, with the total precipitation from the ERA-5 and the MERRA-2 reanalysis products during the snow accumulation seasons from 1981 until today. We propose a machine learning model to adjust the precipitation of reanalysis products to the elevation of the glaciers, thus deriving snow water equivalent (SWE) estimates over glaciers uncovered by ground observations and/or filling observational gaps. We use a gradient boosting regressor (GBR), which combines several meteorological variables from the reanalyses (e.g. air temperature, relative humidity) with topographical parameters. These GBR-derived estimates are evaluated against the winter mass balance data by means of a leave-one-glacier-out cross-validation (site-independent GBR) and a leave-one-season-out cross-validation (season-independent GBR). Both site-independent and season-independent GBRs allowed reducing (increasing) the bias (correlation) between the precipitation of the original reanalyses and the winter mass balance data of the glaciers. Finally, the GBR models are used to derive SWE trends on glaciers between 1981 and 2021. The resulting trends are more pronounced than those obtained from the total precipitation of the original reanalyses. On a regional scale, significant 41-year SWE trends over glaciers are observed in the Alps (MERRA-2 season-independent GBR: +0.4 %/year) and in Western Canada (ERA-5 season-independent GBR: +0.2 %/year), while significant positive/negative trends are observed in all the regions for single glaciers or specific elevations. Negative (positive) SWE trends are typically observed at lower (higher) elevations, where the impact of rising temperatures is more (less) dominant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call