Abstract

Ice shelf collapse reduces buttressing and enables glaciers to contribute more rapidly to sea-level rise in a warming climate. The abrupt collapses of the Larsen A and B ice shelves on the Antarctic Peninsula (AP) have been attributed to increased surface melt. However, no studies examine the timing, magnitude, and location of surface melt processes immediately preceding these disintegrations. Here we use a regional climate model and Machine Learning analyses to evaluate the influence of föhn wind events on the surface liquid water budget for collapsed and extant ice shelves. We find föhn winds caused 25 % of the total annual melt in just 9 days on Larsen A which helped melt lakes surpass a critical stability depth that, we suggest, ultimately triggered collapse. By contrast, föhns appear to pre-condition, not trigger, Larsen B's collapse. AP extant ice shelves will remain less vulnerable to surface-melt-driven instability due to weaker föhn-driven melt so long as surface temperatures and föhn occurrence remain within historical bounds.

Highlights

  • Abstract.‌I‌ce‌‌shelf‌‌collapse‌‌reduces‌‌buttressing‌‌and‌‌enables‌‌glaciers‌‌to‌‌contribute‌‌more‌‌rapidly‌‌to‌‌sea-level‌‌rise‌‌in‌‌a‌‌ warming‌‌climate.‌‌The‌‌abrupt‌‌collapses‌‌of‌‌the‌‌Larsen‌‌A‌‌and‌‌B‌‌ice‌‌shelves‌‌on‌‌the‌‌Antarctic‌‌Peninsula‌‌(AP)‌‌have‌‌been‌‌ attributed‌‌to‌‌increased‌‌surface‌‌melt.‌‌However,‌‌no‌‌studies‌‌examine‌‌the‌‌timing,‌‌magnitude,‌‌and‌‌location‌‌of‌‌surface‌‌melt‌‌ processes‌‌immediately‌‌preceding‌‌these‌‌disintegrations.‌‌Here‌‌we‌‌use‌‌a‌‌regional‌‌climate‌‌model‌‌and‌‌Machine‌‌Learning‌‌ 15 analyses‌‌to‌‌evaluate‌‌the‌‌influence‌‌of‌‌föhn‌‌wind‌‌events‌‌on‌‌the‌‌surface‌‌liquid‌‌water‌‌budget‌‌for‌‌collapsed‌‌and‌‌extant‌‌ice‌‌ shelves.‌‌We‌‌find‌‌föhn‌‌winds‌‌caused‌‌25%‌‌of‌‌the‌‌total‌‌annual‌‌melt‌‌in‌‌just‌‌9‌‌days‌‌on‌‌Larsen‌‌A‌‌which‌‌helped‌‌melt‌‌lakes‌‌surpass‌‌ a‌‌critical‌‌stability‌‌depth‌‌that,‌‌we‌‌suggest,‌‌ultimately‌‌triggered‌‌collapse.‌‌By‌‌contrast,‌‌föhns‌‌appear‌‌to‌‌pre-condition,‌‌not‌‌ trigger,‌‌Larsen‌‌B's‌‌collapse.‌‌AP‌‌extant‌‌ice‌‌shelves‌‌will‌‌remain‌‌less‌‌vulnerable‌‌to‌‌surface-melt-driven‌‌instability‌‌due‌‌to‌‌ weaker‌‌föhn-driven‌‌melt‌‌so‌‌long‌‌as‌‌surface‌‌temperatures‌‌and‌‌föhn‌‌occurrence‌‌remain‌‌within‌‌historical‌‌bounds.‌ ‌

  • 45 meltwater‌‌applies‌‌outward‌‌and‌‌downward‌‌pressure‌‌to‌‌the‌‌walls‌‌and‌‌tip‌‌of‌‌crevasses‌‌that‌‌can‌‌propagate‌‌through‌‌the‌‌ice‌‌shelf‌‌ (Scambos‌‌et‌‌al.,‌‌2003;‌‌Banwell‌‌et‌‌al.,‌‌2013;‌‌Bell‌‌et‌‌al.,‌‌2018).‌‌Melt‌‌lakes‌‌at‌‌critical‌‌water‌‌depths‌‌create‌‌a‌‌fracture‌‌pattern‌‌that‌‌ splits‌‌ice‌‌shelves‌‌into‌‌sections‌‌with‌‌aspect‌‌ratios‌‌that‌‌support‌‌unstable‌‌rollover‌‌and‌‌hydrofracture‌‌cascades‌‌that‌‌begin‌‌when‌‌ melt‌‌lakes‌‌drain‌‌or‌‌calving‌‌occurs‌‌at‌‌the‌‌ice‌‌shelf‌‌terminus‌‌(Banwell‌‌et‌‌al.,‌‌2013;‌‌Robel‌‌et‌‌al.,‌‌2019).‌‌ ‌ Previous‌‌research‌‌acknowledges‌‌enhanced‌‌surface‌‌melt‌‌during‌‌years‌‌of‌‌collapse‌‌and‌‌the‌‌presence‌‌of‌‌föhn‌‌wind‌‌

  • 55 events‌‌on‌‌the‌‌eastern‌‌AP‌‌since‌‌2002‌‌(Vaughan‌‌et‌‌al.,‌‌2003;‌‌Bozkurt‌‌et‌‌al.,‌‌2020).‌‌The‌‌questions,‌‌therefore,‌‌arise:‌‌1)‌‌To‌‌what‌‌ extent‌‌does‌‌föhn-induced‌‌melt‌‌contribute‌‌to‌‌the‌‌surface‌‌melt‌‌budget‌‌on‌‌the‌‌AP?;‌‌2)‌‌Does‌‌the‌‌confluence‌‌of‌‌föhn-induced‌‌ melt‌‌quantity,‌‌spatial‌‌impact,‌‌and‌‌timing‌‌constitute‌‌a‌‌trigger‌‌for‌‌the‌‌collapse‌‌of‌‌the‌‌LAIS‌‌and‌‌LBIS?;‌‌3)‌‌What‌‌are‌‌the‌‌ implications‌‌of‌‌föhn-induced‌‌melt‌‌for‌‌the‌‌remaining‌‌eastern‌‌AP‌‌ice‌‌shelves?‌‌ ‌ To‌‌address‌‌these‌‌questions‌‌we‌‌consider‌‌three‌‌metrics:‌‌Section‌‌3.1‌‌explores‌‌the‌‌total‌‌annual‌‌melt‌‌quantity‌‌and‌‌spatial‌

Read more

Summary

Introduction

Abstract.‌I‌ce‌‌shelf‌‌collapse‌‌reduces‌‌buttressing‌‌and‌‌enables‌‌glaciers‌‌to‌‌contribute‌‌more‌‌rapidly‌‌to‌‌sea-level‌‌rise‌‌in‌‌a‌‌ warming‌‌climate.‌‌The‌‌abrupt‌‌collapses‌‌of‌‌the‌‌Larsen‌‌A‌‌and‌‌B‌‌ice‌‌shelves‌‌on‌‌the‌‌Antarctic‌‌Peninsula‌‌(AP)‌‌have‌‌been‌‌ attributed‌‌to‌‌increased‌‌surface‌‌melt.‌‌However,‌‌no‌‌studies‌‌examine‌‌the‌‌timing,‌‌magnitude,‌‌and‌‌location‌‌of‌‌surface‌‌melt‌‌ processes‌‌immediately‌‌preceding‌‌these‌‌disintegrations.‌‌Here‌‌we‌‌use‌‌a‌‌regional‌‌climate‌‌model‌‌and‌‌Machine‌‌Learning‌‌ 15 analyses‌‌to‌‌evaluate‌‌the‌‌influence‌‌of‌‌föhn‌‌wind‌‌events‌‌on‌‌the‌‌surface‌‌liquid‌‌water‌‌budget‌‌for‌‌collapsed‌‌and‌‌extant‌‌ice‌‌ shelves.‌‌We‌‌find‌‌föhn‌‌winds‌‌caused‌‌25%‌‌of‌‌the‌‌total‌‌annual‌‌melt‌‌in‌‌just‌‌9‌‌days‌‌on‌‌Larsen‌‌A‌‌which‌‌helped‌‌melt‌‌lakes‌‌surpass‌‌ a‌‌critical‌‌stability‌‌depth‌‌that,‌‌we‌‌suggest,‌‌ultimately‌‌triggered‌‌collapse.‌‌By‌‌contrast,‌‌föhns‌‌appear‌‌to‌‌pre-condition,‌‌not‌‌ trigger,‌‌Larsen‌‌B's‌‌collapse.‌‌AP‌‌extant‌‌ice‌‌shelves‌‌will‌‌remain‌‌less‌‌vulnerable‌‌to‌‌surface-melt-driven‌‌instability‌‌due‌‌to‌‌ weaker‌‌föhn-driven‌‌melt‌‌so‌‌long‌‌as‌‌surface‌‌temperatures‌‌and‌‌föhn‌‌occurrence‌‌remain‌‌within‌‌historical‌‌bounds.‌ ‌ 45 meltwater‌‌applies‌‌outward‌‌and‌‌downward‌‌pressure‌‌to‌‌the‌‌walls‌‌and‌‌tip‌‌of‌‌crevasses‌‌that‌‌can‌‌propagate‌‌through‌‌the‌‌ice‌‌shelf‌‌ (Scambos‌‌et‌‌al.,‌‌2003;‌‌Banwell‌‌et‌‌al.,‌‌2013;‌‌Bell‌‌et‌‌al.,‌‌2018).‌‌Melt‌‌lakes‌‌at‌‌critical‌‌water‌‌depths‌‌create‌‌a‌‌fracture‌‌pattern‌‌that‌‌ splits‌‌ice‌‌shelves‌‌into‌‌sections‌‌with‌‌aspect‌‌ratios‌‌that‌‌support‌‌unstable‌‌rollover‌‌and‌‌hydrofracture‌‌cascades‌‌that‌‌begin‌‌when‌‌ melt‌‌lakes‌‌drain‌‌or‌‌calving‌‌occurs‌‌at‌‌the‌‌ice‌‌shelf‌‌terminus‌‌(Banwell‌‌et‌‌al.,‌‌2013;‌‌Robel‌‌et‌‌al.,‌‌2019).‌‌ ‌ Previous‌‌research‌‌acknowledges‌‌enhanced‌‌surface‌‌melt‌‌during‌‌years‌‌of‌‌collapse‌‌and‌‌the‌‌presence‌‌of‌‌föhn‌‌wind‌‌ 55 events‌‌on‌‌the‌‌eastern‌‌AP‌‌since‌‌2002‌‌(Vaughan‌‌et‌‌al.,‌‌2003;‌‌Bozkurt‌‌et‌‌al.,‌‌2020).‌‌The‌‌questions,‌‌therefore,‌‌arise:‌‌1)‌‌To‌‌what‌‌ extent‌‌does‌‌föhn-induced‌‌melt‌‌contribute‌‌to‌‌the‌‌surface‌‌melt‌‌budget‌‌on‌‌the‌‌AP?;‌‌2)‌‌Does‌‌the‌‌confluence‌‌of‌‌föhn-induced‌‌ melt‌‌quantity,‌‌spatial‌‌impact,‌‌and‌‌timing‌‌constitute‌‌a‌‌trigger‌‌for‌‌the‌‌collapse‌‌of‌‌the‌‌LAIS‌‌and‌‌LBIS?;‌‌3)‌‌What‌‌are‌‌the‌‌ implications‌‌of‌‌föhn-induced‌‌melt‌‌for‌‌the‌‌remaining‌‌eastern‌‌AP‌‌ice‌‌shelves?‌‌ ‌ To‌‌address‌‌these‌‌questions‌‌we‌‌consider‌‌three‌‌metrics:‌‌Section‌‌3.1‌‌explores‌‌the‌‌total‌‌annual‌‌melt‌‌quantity‌‌and‌‌spatial‌

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.