Abstract

A recently published meteorology and air quality modeling study has several serious deficiencies deserving comment. The study uses the weather research and forecasting/chemistry (WRF/Chem) model to compare and evaluate boundary layer and land surface modeling options. The most serious of the study's deficiencies is reporting WRF/Chem results for both meteorological and chemical quantities using the asymmetric convective model version 2 (ACM2). While the ACM2 is a valid model option for WRF, it has not yet been implemented for the chemical portion of the WRF/Chem model. Hence, the reported air quality modeling results using ACM2 are invalid. Furthermore, publication of these results gives the erroneous impression that the ACM2 model is not well suited for air quality applications when, in fact, it is the default boundary layer model in the community multiscale air quality (CMAQ) model.

Highlights

  • Yerramilli et al [1] describe a modeling study using the weather research and forecasting/chemistry (WRF/Chem) model to study the sensitivity of meteorology and air quality modeling results to various combinations of planetary boundary layer (PBL) and land surface models (LSMs)

  • One of the PBL options used for their WRF/Chem model simulations was the asymmetric convective model version 2 (ACM2) [2, 3] which has not been implemented for use with the chemical part of the WRF/Chem model

  • WRF/Chem results using the ACM2 were compared to model simulations using the Yonsei University PBL model (YSU) [4] and the Mellor-Yamada-Janjic TKE model (MYJ) [5]

Read more

Summary

Introduction

Yerramilli et al [1] describe a modeling study using the weather research and forecasting/chemistry (WRF/Chem) model to study the sensitivity of meteorology and air quality modeling results to various combinations of planetary boundary layer (PBL) and land surface models (LSMs). The results shown for modeled O3 and NO2 concentrations using the ACM2 PBL scheme are invalid. WRF/Chem results using the ACM2 were compared to model simulations using the Yonsei University PBL model (YSU) [4] and the Mellor-Yamada-Janjic TKE model (MYJ) [5].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call