Abstract
An instrumental drift in the Point Target Response (PTR) parameters has been detected on the Copernicus Sentinel-3A (S3A) altimetry mission. It could have an impact on sea level rise of a few tenths of mm yr−1. In order to accurately evaluate this drift, a method for detecting global and local mean sea level relative drifts between two altimetry missions is implemented. Associated uncertainties are also accurately calculated thanks to a detailed error budget analysis. A drift on both S3A and S3B GMSL is detected with values significantly higher than expected. For S3A, the relative GMSL drift detected is 1.0 mm yr−1 with Jason-3 and 1.3 mm yr−1 with SARAL/AltiKa. For S3B, the relative GMSL drift detected is −2.2 mm yr−1 with SARAL/AltiKa and −3.4 mm yr−1 with Jason-3. The drift detected at global level does not show detectable regional variations above the uncertainty level of the proposed method. The investigations led by the altimeter experts can now explain the origin of this drift for S3A, while it is still under investigation for S3B. The ability of the implemented method to detect a sea level drift with respect to the length of the common period is also analysed. We find that the maximum detectable sea-level drift over a 5 years period is 0.3 mm yr−1 at the global scale, and 1.5 mm yr−1 at local scales (2400 km). However, these levels of uncertainty do not meet the sea-level stability requirements for climate change studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.