Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> Debris flows triggered by rainfall are catastrophic geohazards that occur compound during extreme events. Early warning systems for shallow landslides and debris flows at the territorial-scale use thresholds of rainfall Intensity-Duration (ID). ID thresholds are defined using hourly rainfall. Due to instrumental and operational challenges, current early warning systems have difficulty forecasting sub-daily time series of weather for landslides in the Himalayas. Here, we present a framework that employs a spatio-temporal numerical model preceded by the weather research and forecast (WRF) model for analysing debris flows induced by extreme rainfall. The WRF model runs at 1.8 km * 1.8 km resolution to produce hourly rainfall. The hourly rainfall is then used as an input boundary condition in the spatio-temporal numerical model for debris flows. The models are first calibrated using the debris flows in the Kedarnath catchment that occurred during the 2013 North India Floods. Various precipitation intensities based on the glossary of the India Meteorological Department (IMD) are set and parametric numerical simulations are run identifying ID thresholds of debris flows. Our findings suggest that the WRF model combined with the debris flow numerical model shall be used to establish ID thresholds in territorial landslide early warning systems (Te-LEWS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call