Abstract

We report the results of new molecular dynamics simulations of liquid-supported monolayers of perfluorinated and partially fluorinated amphiphiles such as F(CF2)11COOH and F(CF2)10CH2COOH. The new simulations include a representation of the superhelical structure of the perfluoroalkane portion of the amphiphile chain in the intramolecular potential energy; in addition, the calculation of the collective tilt angle of the monolayer is improved to include the effect of the azimuthal distribution of individual molecular tilt angles. The results of the simulations are in agreement with the available experimental data. In particular, the packing structure and the observed breakup of the homogeneous ordered monolayer into ordered islands with the same collective tilt of the molecules are correctly predicted as are the very small collective tilt angles. These new results remove the discrepancy between predicted and observed collective tilt angles reported in our previous papers [J. Chem. Phys. 96, 1352, 4735 (1992)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.