Abstract

Aim: Metformin plays an important role in the inhibition of cancer cell growth and prolongs remission durations. It reverses progestin-resistance in endometrial cancer cells by downregulating glyoxalase I (GloI) expression. This study aimed to investigate the effect of metformin on endometrial cancer cell chemotherapeutic sensitivity and explore the underlying molecular mechanisms. Material and Methods: MTT assay was performed to determine the rate of cell death after cisplatin and paclitaxel with or without metformin. Western blot was carried out to analyze GloI expression. SiRNA-targeting of GloI was used to knockdown GloI expression before further treatment with chemotherapeutic agents to examine the effect of GloI downregulation on chemotherapy-induced cell killing. In addition, plasmid transfection was used to overexpress GloI and determine whether high GloI levels blocked metformin-enhanced cell sensitivity to chemotherapy. PCR was used to analyze the efficiency of RNA interference and plasmid transfection. Results: The addition of metformin enhanced the sensitivity of endometrial cells to cisplatin and paclitaxel, which was associated with reduced levels of GloI expression. Moreover, low-dose chemotherapeutic drugs alone could not significantly reduce GloI expression, whereas the addition of metformin potently downregulated GloI protein levels. Cisplatin and paclitaxel markedly inhibited the proliferative ability of GloI-depleted endometrial cancer cells. However, the overexpression of GloI abolished the effect of metformin-enhanced cell sensitivity to chemotherapeutic drugs. Conclusion: Metformin enhances the rate of cell-killing induced by chemotherapeutic agents by repressing GloI expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call