Abstract

It is claimed by Rhodes, Morari, and Wiggins [Chaos 9, 108-123 (1999)] that the projection algorithm of Maas and Pope [Combust. Flame 88, 239-264 (1992)] identifies the slow invariant manifold of a system of ordinary differential equations with time-scale separation. A transformation to Fenichel normal form serves as a tool to prove this statement. Furthermore, Rhodes, Morari, and Wiggins [Chaos 9, 108-123 (1999)] conjectured that away from a slow manifold, the criterion of Maas and Pope will never be fulfilled. We present two examples that refute the assertions of Rhodes, Morari, and Wiggins. In the first example, the algorithm of Maas and Pope leads to a manifold that is not invariant but close to a slow invariant manifold. The claim of Rhodes, Morari, and Wiggins that the Maas and Pope projection algorithm is invariant under a coordinate transformation to Fenichel normal form is shown to be not correct in this case. In the second example, the projection algorithm of Maas and Pope leads to a manifold that lies in a region where no slow manifold exists at all. This rejects the conjecture of Rhodes, Morari, and Wiggins mentioned above.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.