Abstract
Intensity-duration-frequency (IDF) statistics describing extreme rainfall intensities in Norway were analysed with the purpose of investigating how the shape of the curves is influenced by geographical conditions and local climate characteristics. To this end, principal component analysis (PCA) was used to quantify salient information about the IDF curves and a Bayesian linear regression was used to study the dependency of the shapes on climatological and geographical information. Our analysis indicated that the shapes of IDF curves in Norway are influenced by both geographical conditions and 24-hr precipitation statistics. Based on this analysis, an empirical model was constructed to predict IDF curves in locations with insufficient sub-hourly rain gauge data and for the future using downscaled data from global climate models. Our new method was also compared with a recently proposed formula for estimating sub-daily rainfall intensity based on 24-hr rain gauge data. We found that a Bayesian inference of a PCA representation of IDF curves provides a promising strategy for estimating sub-daily return levels for rainfall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.