Abstract

Heavy Precipitation Events (HPE) are the result of enormous quantities of water vapour being transported to a limited area. HPE rainfall rates and volumes cannot not be fully stored on and below the land surface, often leading to floods with short forecast lead times that may cause damage to humans, properties, and infrastructure. Towards an improved scientific understanding of the entire process chain from HPE formation to flooding at the catchment scale, we propose an elaborated event-triggered observation concept. It combines flexible mobile observing systems out of the fields of meteorology, hydrology and geophysics with stationary networks to capture atmospheric transport processes, heterogeneous precipitation patterns, land surface and subsurface storage processes, and runoff dynamics. As part of the Helmholtz Research Infrastructure MOSES (Modular Observation Solutions for Earth Systems), the added value of our observation strategy is exemplarily shown by its first implementation in the Mueglitz river basin (210 km2), a headwater catchment of the Elbe in the Eastern Ore Mountains with historical and recent extreme flood events. Punctual radiosonde observations combined with continuous microwave radiometer measurements and back trajectory calculations deliver information about the moisture sources, initiation and development of HPE X-Band radar observations calibrated by ground based disdrometers and rain gauges deliver precipitation information with high spatial resolution. Runoff measurements in small sub-catchments complement the discharge times series of the operational network of gauging stations. Closing the catchment water balance at the HPE scale, however, is still challenging. While evapotranspiration is of less importance when studying short term convective HPE, information on the spatial distribution and on temporal variations of soil moisture and total water storage by stationary and roving cosmic ray measurements and by hybrid terrestrial gravimetry offer prospects for improved quantification of the storage term of the water balance equation. Overall, the cross-disciplinary observation strategy presented here opens up new ways towards an integrative and scale-bridging understanding of event dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.