Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> Building source models and performing forward calculations are the basis for data processing, analysis, and interpretation of geophysical data. However, open-source tools for flexibly constructing source models and forward modelling of the potential fields are still lacking. This paper developed a new MATLAB-based software &ndash; G&amp;M3D to fill this gap. The software has two main functions: (1) constructing 3-D gravity and magnetic source models and (2) calculating and visualizing their gravity and magnetic fields. In the 3D-Modeling Module, rectangular prisms are used to approximate anomalous geologic bodies. Users can flexibly construct 3-D regular-shaped models with variable densities or magnetic parameters using the Sphere, Cylinder, and Cube tools, or build irregular-shaped models using the Irregular (Layer-Building) tool. On the other hand, the gravity anomalies, gravity gradients, total magnetic intensity, and magnetic gradients generated by the created 3-D sources can be rapidly calculated, visualized, and saved in the Forward-Modelling Module of G&amp;M3D. In order to improve the efficiency of the gravity and magnetic forward calculations, the 2-D discrete convolution algorithm is improved and applied in the software for the forward modelling of the gravity and magnetic fields. Finally, we use G&amp;M3D for the forward gravity modelling over a salt dome in Vinton Dome, southern Louisiana, U.S., which verifies its correctness and practicality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call