Abstract

Model resolution and the included physical processes are two of the most important factors that determine the realism of ocean model simulations. In this study, a new global surface wave-tide-circulation coupled ocean model FIO-COM32 with a resolution of 1/32°×1/32° is developed and validated. Promotion of the horizontal resolution from 1/10° to 1/32° leads to significant improvements in the simulations of surface eddy kinetic energy (EKE), main paths of the Kuroshio and Gulf Stream, and the global tides. We propose the Integrated Circulation Route Error (ICRE) as a quantitative criteria to evaluate the simulated main paths of Kuroshio and Gulf Stream. The non-breaking surface wave-induced mixing (Bv) is proven to still be an important contributor that improves the agreement of the simulated summer mixed layer depth (MLD) and the Argo observations even with a high horizontal resolution of 1/32°. The mean error of the simulated mid-latitude summer MLD is reduced from -4.8 m in the numerical experiment without Bv to -0.6 m in experiment with Bv. By including the global tide, the global distributions of internal tide can be explicitly simulated in this new model and are comparable to the satellite observations. Based on Jason3 along-track sea surface height (SSH), wave number spectral slopes of mesoscale ranges and wave number-frequency analysis show that the unbalanced motions induced SSH undulation is a key factor for the substantially improved agreement between model and satellite observations in the low latitudes and low EKE regions. For ocean model community, surface waves, tidal currents and ocean circulations have been separated into different streams for more than half a century. This paper suggests that it should be the time to merge these three streams for new generation ocean model development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.