Abstract

Bias correction (BC) is often a necessity to improve the applicability of global and regional climate model (GCM and RCM, respectively) outputs to impact assessment studies, which usually depend on multiple potentially dependent variables. To date, various BC methods have been developed which adjust climate variables separately (univariate BC) or jointly (multivariate BC) prior to their application in impact studies (i.e., the component-wise approach). Another possible approach is to first calculate the multivariate hazard index from the original, biased simulations, and bias-correct the impact model output or index itself using univariate methods (direct approach). This has the advantage of circumventing the difficulties associated with correcting the inter-variable dependence of climate variables which is not considered by univariate BC methods. Using a multivariate drought index (i.e., SPEI) as an example, the present study compares different state-ofthe- art BC methods (univariate and multivariate) and BC approaches (direct and component-wise) applied to climate model simulations stemming from different experiments at different spatial resolutions (namely CORDEX, CORDEX-CORE and CMIP6). The BC methods are calibrated and evaluated over the same historical period (1986–2005). The proposed framework is demonstrated as a case study over a transboundary watershed, i.e. the Upper Jhelum Basin (UJB) in the Western Himalaya. Results show that (1) there is some added value of multivariate BC methods over the univariate methods in adjusting the inter-variable relationship, however, comparable performance is found for SPEI indices. (2) The best performing BC methods exhibits a comparable performance under both approaches with a slightly better performance for the direct approach. (3) The added value of the high-resolution experiments (CORDEX-CORE) compared to their coarser resolution counterparts (CORDEX) are not apparent in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.