Abstract

Firedrake is an automated system for solving partial differential equations using the finite element method. By applying sophisticated performance optimisations through automatic code-generation techniques, it provides a means to create accurate, efficient, flexible, easily extensible, scalable, transparent and reproducible research software, that is ideally suited to simulating a wide-range of problems in geophysical fluid dynamics. Here, we demonstrate the applicability of Firedrake for geodynamical simulation, with a focus on mantle dynamics. The accuracy and efficiency of the approach is confirmed via comparisons against a suite of analytical and benchmark cases of systematically increasing complexity, whilst parallel scalability is demonstrated up to 12288 compute cores, where the problem size and the number of processing cores are simultaneously increased. In addition, Firedrake's flexibility is highlighted via straightforward application to different physical (e.g. complex nonlinear rheologies, compressibility) and geometrical (2-D and 3-D Cartesian and spherical domains) scenarios. Finally, a representative simulation of global mantle convection is examined, which incorporates 230 Myr of plate motion history as a kinematic surface boundary condition, confirming its suitability for addressing research problems at the frontiers of global mantle dynamics research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.