Abstract
Satellite radar backscatter contains unique information on land surface moisture, vegetation features, and surface roughness, and can be acquired in all weather conditions, thus has been used in a range of earth science disciplines. However, there is no single global radar data set that spans more than two decades. This has limited the use of radar data for trend analysis over extended time intervals. We here provide the first long-term (since 1992), high resolution (~8.9 km) satellite radar backscatter data set over global land areas, the C-band Scatterometer (CScat) data set, by fusing signals from European Remote Sensing satellite (ERS, 1992–2001, C-band, 5.3 GHz), Quick Scatterometer (QSCAT, 1999–2009, Ku-band, 13.4 GHz), and the Advanced Scatterometer (ASCAT, since 2007, C-band, 5.255 GHz). The six-year data gap between C-band ERS and ASCAT was filled out by modelling an equivalent C-band signal during 1999–2009 from Ku-band QSCAT signals and climatic information. Towards this purpose, we first rescaled the signals from different sensors, pixel by pixel, using a new signal rescaling method that is robust to limited overlapping observations among sensors. We then corrected the monthly signal differences between the C-band and the scaled Ku-band signals, by modelling the signal differences from climatic variables (i.e., monthly precipitation, skin temperature, and snow depth) using decision tree regression. The quality of the merged radar signal was assessed by computing the Pearson r, Root Mean Square Error (RMSE), and relative RMSE (rRMSE) between the C-band and the corrected Ku-band signals in the overlapping years (1999–2001 and 2007–2009). We obtained high Pearson r values and low RMSE values at both the regional (r ≥ 0.93, RMSE ≤ 0.16, rRMSE ≤0.37) and pixel levels (median r across pixels ≥ 0.80, median RMSE ≤ 0.38, median rRMSE ≤ 0.64), suggesting high accuracy for the data merging procedure. The merged radar signal was then validated with a continuous ERS-2 data set available between 1995 and 2011. ERS-2 stopped working in full mode after 2001 but observations are occasionally available for a subset of the pixels until 2011. Because the period of 1995–2011 fully overlaps with the working period of QSCAT (1999–2009), comparing the merged radar signal against the ERS-2 data in 1995–2011 is the most direct validation available. We found concordant monthly dynamics between the merged radar signals and the ERS-2 signals during 1995–2011, with Pearson r value ranging from 0.79 to 0.98 across regions. These results evidenced that our merged radar data have a consistent C-band signal dynamic. The CScat data set (https://doi.org/10.6084/m9.figshare.20407857, Tao et al. 2022a) is expected to advance our understanding of the long-term changes in, e.g., global vegetation and soil moisture. The data set will be updated on a regular basis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.