Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> Knowledge about streamflow regimes and values is essential for different activities and situations, in which justified decisions must be made. However, streamflow behavior is commonly assumed as non-linear, being controlled by various mechanisms that act on different temporal and spatial scales, making its estimate challenging. An example is the construction and operation of infrastructures such as dams and reservoirs in rivers. The challenges faced by modelers to correctly describe the impact of dams on hydrological systems are considerable. In this study, an already implemented, calibrated, and validated solution of MOHID-Land model for natural regime flow in Ulla River basin was considered as baseline. The referred watershed comprehends three reservoirs. Outflow values were estimated considering a basic operation rule for two of them (run-of-the-river dams) and considering a data-driven model of Convolutional Long Short-Term Memory (CLSTM) type for the other (high-capacity dam). The outflow values obtained with the CLSTM model were imposed in the hydrological model, while the hydrological model fed the CLSTM model with the level and the inflow of the reservoir. This coupled system was daily evaluated in two hydrometric stations located downstream of the reservoirs, resulting in an improved performance compared with the baseline application. The analysis of the modelled values with and without reservoirs further demonstrated that considering dams&rsquo; operations in the hydrological model resulted in an increase of the streamflow during the dry season and a decrease during the wet season but with no differences in the average streamflow. The coupled system is thus a promising solution for improving streamflow estimates in modified rivers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.