Abstract
<strong class="journal-contentHeaderColor">Abstract.</strong> The biogeochemical behaviour of the Southern Ocean is complex and dynamic. The processes that affect this behaviour are highly dependent on physical, chemical, and biological constraints, which are poorly constrained in Earth System Models. We assess how emissions of dimethyl sulfide (DMS), a precursor of sulfate aerosol, change over the Southern Ocean when the chlorophyll-a distribution, which influences oceanic DMS production, is altered. Using a nudged configuration of the atmosphere-only United Kingdom Earth System Model, UKESM1-AMIP, we performed nine 10-year simulations using forcings representative of the period 2009–2018. Four different seawater DMS data sets are tested as input for these simulations. Three different DMS sea-to-air flux parameterizations are also explored. Our goal is to evaluate the changes in oceanic DMS, sea-to-air fluxes of DMS, and atmospheric DMS through these different simulations during austral summer. The mean spread across all the simulations with different oceanic DMS datasets, but the same sea-to-air flux parameterizations, is 112 % (3.3 to 6.9 TgS Yr<sup>−1</sup>). The mean spread in simulations using the same oceanic DMS dataset, but differing sea-to-air flux parameterisations is 50–60 % (2.9 to 4.7 TgS Yr<sup>−1</sup>). The choice of DMS emission parameterisation has a larger influence on atmospheric DMS than the choice of oceanic DMS source. We also find that linear relationships between wind and DMS flux generally compare better to observations than quadratic relationships. Simulations that implement a quadratic emission rate show on average 35 % higher DMS mixing ratios than the linear emission rates. Simulations using seawater DMS derived from satellite chlorophyll-a data in combination with a recently-developed flux parameterisation for DMS show the closest agreement with atmospheric DMS observations and are recommended to be included in future simulations. This work recommends for Earth System Models to include a sea-to-air parameterization that is appropriate for DMS, and for oceanic DMS datasets to include inter-annual variability based on observed marine biogenic activity. Such improvements will provide a more accurate process-based representation of oceanic and atmospheric DMS, and therefore sulfate aerosol, in the Southern Ocean region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.