Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> Active bromine (e.g., Br<sub>2</sub>, BrCl, BrO, HOBr) promotes atmospheric ozone destruction and mercury removal. Here we report a previously unidentified participant in active-Br chemistry, cyanogen bromide (BrCN), measured during the NASA Atmospheric Tomography (ATom) mission. BrCN was confined to polar boundary layers, often appearing at concentrations higher than other Br compounds. The chemistry of BrCN determines whether it promotes or inhibits ozone and mercury removal. This dataset provides evidence that much of the BrCN was from atmospheric Br chemistry involving surface reactions with reduced nitrogen compounds. Since gas phase loss processes are known to be relatively slow, surface reactions must also be the major loss processes, with vertical profiles implying a BrCN atmospheric lifetime in the range 1&ndash;10 days. Liquid phase reactions of BrCN tend to convert Br to bromide (Br&macr;) or C-Br bonded organics, constituting a loss of active Br. Thus, accounting for BrCN chemistry is crucial to understanding polar Br cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.