Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> The Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite mission developed by the European Space Agency (ESA) in cooperation with the Japan Aerospace Exploration Agency (JAXA) features a 94-GHz Doppler Cloud Profiling Radar (CPR). Here, the theoretical basis of the Cloud and Precipitation Microphysics (C-CLD) L2 algorithm is presented. The C-CLD provides best estimates of the vertical profiles of water mass content and hydrometeor characteristic size from CPR reflectivity and hydrometeor sedimentation Doppler velocity estimates using optimal estimation (OE) theory. An ensemble-based method is used to obtain the forward model relations and the associated uncertainty. The ensemble consists of a collection of in-situ measured drop size distributions that span natural microphysical variability. The ensemble mean and standard deviation represent the forward model relations and their microphysics-based uncertainty. The output variables are provided on the Joint-Standard-Grid (JSG) horizontal and L1b vertical grid (1 km along track and 100 m vertically). The OE framework is not applied to liquid-only clouds in drizzle-free and lightly drizzling conditions, where a more statistical approach is preferred.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.