Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> Analytical Multiplicative Random Cascades (MRCs) are widely used for the temporal disaggregation of coarse-resolution precipitation time series. This class of models applies simple scaling laws to represent the dependence of the cascade generator on the temporal scale and the precipitation intensity. Although determinant, the dependence on the external precipitation pattern is usually disregarded. Our work presents a unified MRC modelling framework that allows the cascade generator to depend in a continuous way on temporal scale, precipitation intensity and a so-called precipitation asymmetry index. Different MRC configurations are compared for 81 locations in Switzerland with contrasted climates. The added value of the dependence of the MRC on the temporal scale appears to be unclear, unlike what was suggested in previous works. Introducing the precipitation asymmetry dependence in the model leads to a drastic improvement of model performance for all statistics related to precipitation temporal persistence (wet/dry transition probabilities, lag-n autocorrelation coefficients, lengths of dry/wet spells). Accounting for precipitation asymmetry seems to solve this important limitation of previous MRCs. The model configuration that only accounts for the dependence on precipitation intensity and asymmetry is highly parsimonious, with only five parameters, and provides adequate performances for all locations, seasons and temporal resolutions. The spatial coherency of the parameter estimates indicates a real potential for regionalisation and for further application to any location in Switzerland.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.