Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> An assessment of the soil and bedrock thermal structure of the Sierra de Guadarrama, in Central Spain, is provided using subsurface and ground surface temperature data coming from four deep (20 m) monitoring profiles belonging to the Guadarrama Monitoring Network (GuMNet), and two shallow (1 m) from the Spanish Meteorology Service (AEMET), covering the time span of 2015&ndash;2021 and 1989&ndash;2018, respectively. An evaluation of air and ground surface temperature coupling shows soil insulation due to snow cover is the main source of seasonal decoupling, being especially relevant in winter at high altitude sites. Temperature propagation in the subsurface is characterized by assuming a heat conductive regime, by considering apparent thermal diffusivity values derived from the amplitude attenuation and phase shift of the annual cycle with depth. For the deep profiles, the apparent thermal diffusivity ranges from 1 to 1.3 10<sup>&minus;6</sup> m<sup>2</sup>s<sup>&minus;1</sup>, consistent with values for gneiss and granite, the major bedrock components in the Sierra de Guadarrama. However, thermal diffusivity is lower and more heterogeneous in the soil layers close to the surface (0.4&ndash;0.8 10<sup>&minus;6</sup> m<sup>2</sup>s<sup>&minus;1</sup>). An increase of diffusivity with depth is observed, being generally larger in the soil-bedrock transition, at 4&ndash;8 m depth. A new method based on the spectral attenuation of temperature harmonics allows for analyzing thermal diffusivity from high-frequency changes in the soil near the surface at short timescales. The results are relevant for the understanding of soil thermodynamics in relation to other soil properties and suggest that changes in heat diffusivity are related to soil moisture content changes, which makes this method a potential tool in soil drought and water resource availability reconstruction from soil temperature data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.