Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> The hysteresis behaviour of ice sheets arises because of the different thresholds for growth and decline of a continental-scale ice sheet depending on the initial conditions. In this study, the hysteresis effect of the early Cenozoic Antarctic ice sheet is investigated with an improved ice sheet-climate coupling method that accurately captures the ice-albedo feedback. It is shown that the hysteresis effect of the early Cenozoic Antarctic ice sheet is about ~180 ppmv or between 3.5 &deg;C and 5.5 &deg;C, depending only weakly on the bedrock elevation dataset. Excluding the solid Earth feedback decreases the hysteresis effect significantly towards ~40 ppmv, because the transition to a glacial state can occur at a higher forcing. The rapid transition from a glacial to a deglacial state and oppositely from deglacial to glacial conditions is strongly enhanced by the ice-albedo feedback, in combination with the elevation &ndash; surface mass balance feedback. Variations in the orbital parameters show that extreme values of the orbital parameters are able to exceed the threshold in summer insolation to induce a (de)glaciation. It appears that the long-term eccentricity cycle has a large influence on the ice sheet growth and decline and is able to pace the ice sheet evolution for constant CO<sub>2</sub> concentration close to the glaciation threshold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call