Abstract

This study is based on multiproxy data gained from a 14C-dated 6.5 m long sediment core and a 210Pb-dated 23 cm short core retrieved from Lake Rauchuagytgyn in Chukotka, Arctic Russia. The main objectives are to reconstruct the environmental history and ecological development of the lake during the last 29k years and to investigate the main drivers behind bioproduction shifts. The methods comprise age-modeling and accumulation rate estimation, light-microscope diatom species analysis (74 samples), organic carbon, nitrogen, and mercury analysis. Diatoms have appeared in the lake since 21.8 cal ka BP and are dominated by planktonic Lindavia ocellata and L. cyclopuncta. Around the Pleistocene-Holocene boundary, other taxa including planktonic Aulacoseira and benthic fragilarioid (Staurosira) and achnanthoid species increase in their abundance. There is strong correlation between variations of diatom valve accumulation rates (DAR, mean 176.1 109 valves m2 a1), organic carbon accumulation rates (OCAR, mean 4.6 g m-2 a-1), and mercury accumulation rates (HgAR, mean 63.4 µg m-2 a-1). We discuss the environmental forcings behind shifts in diatom species and found responses of key-taxa to the cold glacial period, postglacial warming, Younger Dryas, and the Holocene Thermal Maximum. The short core data likely suggest recent change of the diatom community at 1907 CE related to human-induced environmental change. Significant correlation between DAR and OCAR in the Holocene interglacial indicates within-lake bioproduction as the main source of carbon deposited in the lake sediment. During both glacial and interglacial episodes HgAR is mainly bound to organic matter in the lake associated to biochemical substrate conditions. There were only ambiguous signs of increased HgAR during the industrialization period. We conclude that pristine Arctic lake systems can serve as CO2 and Hg sinks during warming climate driven by insolation-enhanced within-lake primary productivity. Maintaining intact natural lake ecosystems should therefore be of interest to future environmental policy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call