Abstract
In numerical weather prediction (NWP) models, physical parameterization schemes are the most computationally expensive components, despite being greatly simplified. In the past few years, an increasing number of studies have demonstrated that deep learning (DL) parameterizations of subgrid physics have the potential to accelerate and even outperform conventional physic-based schemes. However, as the DL models are commonly implemented using the DL libraries written in Python, very few DL-based parameterizations have been successfully integrated with NWP models due to the difficulty of embedding Python functions into Fortran-based NWP models. To address this issue, we developed a coupler to allow the DL-based parameterizations to be coupled with a widely used NWP model, i.e., the Weather and Research Forecasting (WRF) model. Similar to the WRF I/O methodologies, the coupler provides the options to run the DL model inference with exclusive processors or the same processors for WRF calculations. In addition, to demonstrate the effectiveness of the coupler, the DL-based radiation emulators are trained and coupled with the WRF model successfully.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.